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I. Introduction 
Dr. Rutter sought this Department of Defense Breast Cancer Research Program Career Development 
Award to further develop the skills, knowledge, and experience that will enable her to develop 
biostatistical methods for breast cancer research. Her original statement of work is provided in 
Appendix A. During the first award year, she has succeeded in gaining knowledge about breast cancer 
epidemiology, and has made significant progress toward statistical research goals. 

Dr. Rutter's statistical research program focuses on receiver operating characteristic (ROC) curves for 
ordinal test outcomes. ROC curves analysis is a method of describing and comparing diagnostic test 
performance when test outcomes are ordinal or continuous.   ROC curves are a natural extension of 
analysis via sensitivity and specificity. Sensitivity is the probability that a test correctly identifies a 
disease-positive case. Specificity is the probability of correctly identifying a disease-negative case. ROC 
curves model the trade-off between sensitivity and specificity as the criterion for a positive test is varied. 
ROC terminology makes the trade-off between sensitivity and specificity explicit: "true positive rate" (TP) 
replaces sensitivity and "false positive rate" (FP) replaces 1-specificity. As the proportion of positive tests 
increases, both TP and FP tend to increase. An ordinal test with k possible outcomes generates up to k-1 
different (FP, TP) pairs, or operating points. Each operating point results from choosing a different 
cutpoint for determining a positive test. Two implicit operating points represent extreme test behavior 
(0,0), when all tests are negative; and (1,1), when all tests are positive. The ROC curve is constructed by 
plotting and linking these k+1 operating points.   The area under the ROC curve (AUC) provides a single 
number summary of overall test performance. An uninformative test has an equal chance of a positive 
result among diseased-positive and disease-negative cases for every criterion, corresponding to an ROC 
curve that is a 45 line and an AUC statistics equal to 1/2. The AUC provides a simple method for 
comparing the performance of competing tests. 

During the first award year, Dr. Rutter focused on aim 1 of her statistical research goals: developing 
methods for estimating accuracy statistics (TP, FP, AUC) when patients are assessed at multiple patient 
sites. She has finished a review of current research for generalized estimating equation and random effect 
approaches for nonlinear models, and is finalizing an article describing bootstrap estimation of accuracy 
statistics (TP, FP, AUC) when patients are assessed at multiple patient sites (Appendix B). 

VIII.   Achievement of Year 1 Technical Objectives 

Technical Objective 1: Gain additional training in breast cancer epidemiology, detection and treatment. 
Dr. Rutter has developed an understanding of breast cancer that will guide her development of statistical 
methods. Directed readings, guided by Drs. Margaret Mandelson and Emily White, provided her with 
basic information about breast cancer etiology, incidence, progression and diagnosis. A key reference was 
a 1993 Epidemiologie Review of breast cancer. [1] During this first award year, the Seattle Breast Cancer 
Research Program discontinued its seminars. However, throughout the 1997/1998 academic year 
Dr. Rutter has participated in a Diagnostic Methods working group, lead by Dr. Mary Lou Thompson, a 
research associate professor at the University of Washington's Department of Biostatistics. Topics 
addresssed by this groups include regression models for estimating diagnostic accuracy and treatment of 
errors in the gold standard for true disease state. Dr. Rutter has also attended Breast Cancer Surveillance 
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group meetings. Surveillance meetings have provided her with important practical information about 
radiologists' interpretation of mammograms, and the timing and execution of diagnostic procedures. 

Dr. Rutter's understanding of the etiology and progression of breast cancer will underlie the statistical 
methods she develops for analyzing mamographic accuracy. Breast cancer results from mutations that 
occur during epithelial cell proliferation in the ducts and lobes. Hormones, such as estrogen and 
progesterone, affect breast cancer risk through their effect on cell proliferation rates. Breast cancer 
represents one extreme on a continuum of disease, ranging from benign proliferative disease, to carcinoma 
in situ, and finally infiltrating carcinoma. [2]   Disease definitions also need to allow for the occurrence of 
more than one pathological type within a single lesion.   The definition of a breast cancer case is an 
important aspect of study design since the definition of breast cancer affects the apparent accuracy of 
mammography. 

Breast cancer research also confirms the need to develop methods that account for error in the gold 
standard. Because mammography is a screening tool, false negative mammograms (also called 'interval 
cancers') are identified using follow-up information. Longer follow-up periods allow more complete 
capture of false negative cases, but risk inclusion of incident cancers and omission of women who are lost 
to follow-up. Furthermore, because disease can be present at multiple diffuse foci, and because pathology 
can vary within a lesion it is possible for biopsy to miss disease that is present. 

The method of collecting of mammographic interpretation data also affects statistical models. The 
standardized set of mammographic interpretations proscribed by the American College of Radiology 
lexicon improves data collection by virtue of standardizaton.[3] However, the inclusion of an interpretive 
code for additional work-up complicates evaluation of mammographic accuracy. The additional work-up 
category does not fit neatly into an ordinal outcome scale. These cases include a mix of women, for 
example, it could naturally include both women with suspected cysts (benign disease) and women with 
suspicious findings that need additional evaluation. Models need to be developed to handle these kinds of 
data. One possible approach to these data is extension of two-part models employed in econometrics. [4] 
The first part of the model would estimate the probability of an interpretation based on the current 
mammogram (i.e., additional workup not requested). The second part of the model would describe 
ordinal outcomes among observations with an interpretation of the current mammogram. Inference is 
drawn from the combined results from these two model steps. 

Technical Objective 2: Develop methods for multiple patient assessments.  
During the past year, new research has significantly advanced statistical methodology for receiver 
operating characteristic (ROC) curves.   Leisenring and Pepe describe generalized estimating equation 
(GEE) approaches to diagnostic test assessment.[5,6,7] The ROC models proposed by Pepe have 
significantly advanced statistical methodology. [7] These models can accommodate correlated rating data, 
and estimation of models can be carried out using standard statistical software packages. 

Recent work by Walsh demonstrates limitations of the robustness of ROC curve analysis. [8].   Prior to 
Walsh's work, the explicit assumption was that parametric ROC curve estimation for ordinal test 
outcomes was insensitive to the latent variable model. [9] This assumption was based on both simulation 
results and heuristic arguments. However, Walsh shows that bias in the estimated area under the ROC 
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curve increases as the maximum observed false positive rate decreases. Thus, comparisons between tests 
can be misleading when there is wide discrepancy in maximum observed false positive rates. In light of 
the development of nonparametric GEE models for ROC analysis and description of the sensitivity of 
parametric ROC model to latent distribution assumptions, Dr. Rutter has abandoned refinements to simple 
parametric approaches, such as random effects modeling and robust covariance adjustment to account for 
correlated data. 

Dr. Rutter has continued work describing, evaluating, and applying nonparametric bootstrap ROC 
estimation for correlated data. The most recent draft of this article is provided in Appendix B. This scope 
of this research has been expanded and now incorporates comparisons against a newly developed 
alternative approach proposed by Obuchowski.[10] Obuchowski describes a non-iterative method for 
nonparametrically estimating the area under the ROC curve (AUC) that uses sums of squares to adjust 
variance estimates for correlation between observations. During the last year, Dr. Rutter completed 
simulations comparing Obuchowski's estimator to the bootstrap estimator. Both methods are theoretically 
valid, and both perform well in a simple situation. However, the bootstrap estimator can be used in more 
complex sampling situations that include multiple sources of correlation. 

Dr. Rutter has also extended her evaluation of the bootstrap estimator to include estimation in the face of 
verification bias. Verification bias occurs when the probability that a patient's disease status is verified 
with a gold standard assessment depends on the studied test. For example, this occurs when patients with 
'clearly negative' tests are not sent to surgery. Verification bias is common, and there are well-known 
adjustments for verification bias.[l 1] Bootstrap estimates can be weighted to account for verification bias, 
and these estimates incorporate the additional variability of bias-adjusting weights.   Simulations 
confirming the consistency of verification-bias adjusted bootstrap estimates are near completion. 

Imaging tests are often evaluated by more than one reader. The frequency of multi-reader tests has 
increased during recent years, with increasing awareness of between reader variability. [12] The bootstrap 
approach allows estimation of overall test performance based on individual reader outcomes.   Two recent 
articles use this approach. Halpern and colleagues compare computed tomography and ultrasound 
assessments of renal artery stenosis. [13] This study had two readers independently evaluate images from 
each modality. Every film was evaluated twice. Readers provided two assessments per patient, one for 
each renal artery. The bootstrap approach was used to compare readers, and to compare average reader 
accuracy for ultrasound and computed tomography. The bootstrap estimate was also used to analyze data 
from IMAGE (Improving Mammography Accuracy with Group Evaluation) substudy of the Breast Cancer 
Surveillance.   This analysis described the accuracy of 31 mammographers who participated in this 
rereading study. Each mammographer evaluated the same set of 140 screening mammograms and 
provided disease ratings for each breast. Simulations confirming the consistency of multi-reader bootstrap 
estimates are currently underway. 
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Technical Objective 3: Develop and teach a course in methods for assessing diagnostic tests. 

During the past year Dr. Rutter gave an invited presentation, "Meta-Analysis of Diagnostic Test Data", at 
the 1997 International Conference on Health Policy Research held December 5-7 at Crystal City, Virginia. 
She also presented this research at the Diagnostic Methods working group. This research will be 
incorporated into a lecture for the diagnostic methods course. 

III. Progress Toward Other Grant Aims 
Collaboration with investigators participating in the Breast Cancer Surveillance Consortium has 
highlighted the need for methods that allow for error in gold standard information. This is particularly 
important for evaluation of breast cancer. Because mammography is used primarily as a screening tool, 
the gold standard is generally constructed by combining information from biopsy results and 
mammographic follow-up. Several authors have explored methods for estimating test accuracy when 
there are multiple test outcomes with no true gold standard. [14-17] Some articles have described methods 
that allow estimation of accuracy in the absence of gold standard information. [18,19] Interest in this area 
is increasing as researchers begin to face the inherent uncertainty of a 'definitive' diagnosis. 

IV. Summary 

Dr. Rutter is on track with her stated goals. She has made significant progress towards proposed research 
goals.   Specific tasks and objectives for the first award year were: 
1. Gain additional training in breast cancer epidemiology, detection and treatment. 

a. Review of information on the epidemiology, diagnosis and treatment of breast cancer as suggested 
by Dr. Margaret Mandelson. 

b. Attend seminars sponsored by the Seattle Breast Cancer Research Program, (through year 4) 
2. Statistical research, aim 1: develop methods for multiple patient assessments 

a. Review current research for generalized estimating equation and random effect approaches for 
nonlinear models. 

b. Test bootstrap, robust covariance adjustment and generalized estimating equation methods for 
breast-level analyses using simulation studies. 

3. Develop and teach a course in methods for assessing diagnostic tests 
a.   Collect relevant references and outlining lectures for the methods course. During this time, 

specific lectures may be presented in other University of Washington courses (through year 2). 

Evaluation of the bootstrap approach is nearly complete. This evaluation extends the research proposed in 
the original application to include a comparison against a new estimator, a description of a bootstrap 
estimate that adjusts for verification bias, and a description of the bootstrap estimator in a multi-reader 
study. 
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Appendix A. Statement of Work 

Technical Objective 1: Gain additional training in breast cancer epidemiology, detection and 
treatment. 

Task 1: Months 1-4: Review of information on the epidemiology, diagnosis and treatment of breast 
cancer as suggested by Dr. Margaret Mandelson. 

Task 2: Months 1-48: Attend seminars sponsored by the Seattle Breast Cancer Research Program. 

Technical Objective 2: Statistical research, aim 1: develop methods for multiple patient 
assessments. 

Task 3: Month 6: Review current research for generalized estimating equation and random effect 
approaches for nonlinear models. 

Task 4: Months -11: Test bootstrap, robust covariance adjustment and generalized estimating equation 
methods for breast-level analyses using simulation studies. 

Task 5: Months 12-21: Develop methods for woman-level analysis, possibly including software 
development for random effects in generalized ordinal regression models. 

Technical Objective 3: Statistical research, aim 2: extend exact methods for ordinal regression 
models 

Task 6: Month 22: Review current research in exact methods. 

Task 7: Months 23-34: Extend exact methods and write computational algorithms and programs to 
compute distributions of sufficient statistics. 

Technical Objective 4: Statistical research, aim 3: Develop methods to adjusting for measurement 
error in disease status 

Task 8: Month 36: Review current research in errors-in-measurement models. 

Task 9: Months 37-48: Develop simple combined corrections for verification and follow-up bias. These 
methods will be extended to allow adjustments in general ordinal regression models. 

Technical Objective 5: Develop and teach a course in methods for assessing diagnostic tests. 

Task 10: Months 1-24: Collect relevant references and outlining lectures for the methods course. During 
this time, specific lectures may be presented in other University of Washington courses. 

Task 11: Months 25-36: Offer methods course at University of Washington through the Department of 
Biostatistics. 
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APPENDIX B: Bootstrap estimation of diagnostic accuracy using 

patient-clustered data 

Carolyn M. Rutter 

Center for Health Studies, Group Health Cooperative 

1730 Minor Avenue, suite 1600, Seattle, WA 98101 

Abstract 

Ordinal outcomes are common in radiology research, with radiologists rating their confi- 

dence that disease is present (or absent) based on diagnostic images. Correlated data arise 

naturally in this setting. When comparing diagnostic modalities, the efficiency of comparisons 

is increased by assessing patients with each tested modality. When evaluting the location of 

disease, patients are assessed at multiple body sites. Using information from multiple body 

sites can also increase the efficiency of comparisons between tests. Recently developed meth- 

ods allow estimation and comparisons of diagnostic accuracy when multiple body sites are 

assessed within patients. This paper describes bootstrap estimation of true positive rates, 

false positive rates, and the area under the reciever operating characteristic curve (AUC) 

when multiple sites are evaluated within patients. Bootstrap estimates are consistent because 

these accuracy statistics are generalized U-statistics. The bootstrap approach can be used 

to describe the accuracy of a single test and to compare the accuracy two or more tests. 

Bootstrap estimation is easy to apply, even in complicated sampling settings. In a simple 

setting, we found that the size and coverage rates of the bootstrap AUC estimator were very 

similar to the size and coverage rates of Obuchowski's estimator based on estimation of cross- 

products. [3] We also demonstrate bootstrap estimation in a more complicated setting: using 

data from a mammographer rereading study we estimate mammographers' overall accuracy 

and individual mammographers deviation from the group average. In this setting boostrap 

estimates incorporated correlation resulting from both the mammographers' evaluation of the 

same set of films from 113 patients and evaluation of up to 2 per patient. 

keywords: receiver operating characteristic curve, true positive rate, false positive rate, simu- 

lation. 
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1. Introduction 

The diagnostic accuracy of imaging tests is often estimated from correlated ordinal outcomes. 

This type of data is common in radiology reasearch, where radiologists are asked to evaluate 

diagnostic imaging studies and provide interpretations using an ordinal scale. Correlated di- 

agnostic test outcomes arise because of evaluation by multiple tests and because of evalution 

of multiple body sites. Evaluation of patients using multiple tests usually occurs by design. 

Because of between patient variability, comparisons between diagnostic tests are more efficient 

when each patient is evaluated using all compared tests Not surprisingly, the first methods 

developed for correlated test data addressed correlation arising from multiple assessment of 

a single site.[?, 2] In this setting, each patient either has disease or does not have disease. 

Evaluation of multiple sites within patients often occurs because of practical application of di- 

agnostic tests. Examples of multi-site diagnostic assessments include screening mammography 

to detect breast cancer, [4] computed tomography of the liver to detect metastatic colorectal 

cancer, [5] and magnetic resonance angiography of leg vessels to detect occlusive peripheral 

vascular disease. [6] In each of these cases, disease can be located at a particular site (or sites) 

and correct localization is required for surgical treatment. An important feature of multi-site 

assessments is that disease state can vary between sites. 

Statistical methods for combining correlated test results from multiple sites are relatively 

new. Two methods have recently been proposed. Obuchowsky describes a method for es- 

timating standard errors for the area under the empirical receiver operating characteristic 

curve area under the curve (AUC) based on sums of squares. [3] Obuchowsky's method allows 

estimation of the standard error of the AUC for a single test, or the standard error of the 

difference between AUC statistics for two tests. Estimation of the appropriate sums of squares 

can become more complicated when there are additional sources of correlation. One way this 

can occur is when each test was evaluated by more than one reader. Pepe proposes a general 

regression methodology that allows comparison between two tests, and uses bootstrap resam- 

pling to estimate standard errors. [7] This regression approach can account for multiple sources 

of correlation. Furthermore, regression methodology allows inclusion of covariates, including 

continuous covariates. However, because the regression approach uses new statistical methods, 
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estimation of true positive rates, false positive rates, and AUC statistic are useful when com- 

paring new results to previously published finding We propose a simple bootstrap approach 

for estimating true positive rates, false positive rates, and AUC for patient-clustered data. 

The bootstrap approach is especially useful when there are multiple sources of correlation. 

2. Nonparametric measures of test accuracy: tp, fp, AUC 

When test outcomes are dichotomous, true positive rates and false positive rates measure 

test accuracy. A test's true positive rate (ip) estimates the probability of a positive outcome 

(indicating presence of disease) when the target disease is present. Similarly, a test's false 

positive rate (fp) estimates the probability of a positive test outcome when disease is absent. 

A perfect diagnostic test has fp = 0 and ip = 1. When test outcomes are ordinal, ip and fp can 

be calculated by dichotomizing outcomes. However, a single (fp, ip) pair cannot completely 

describe the accuracy of an ordinal test because both ip and fp rates depend on test stringency. 

Reciever operating characteristic (ROC) curve analysis accounts for the tradeoff between 

ip and fp as test stringency varies. Suppose the ordinal outcome of a diagnostic test, U, 

takes values in {1,2,..., K} with increasing values of U corresponding to stronger evidence of 

disease. There are K+ 1 possible ways to dichotomize the ordinal test, including 'all positive' 

and 'none positive', and each is associated with a (ip, fp) pair. The empirical ROC curve is 

drawn by plotting pairs of observed rates, fp versus tp, and connecting the K +1 consecutive 

points with straight lines. The empirical ROC curve provides a simple graphical description 

of test performance. 

The overall accuracy of an ordinal test can be summarized by the area under the ROC 

curve (AUC). The AUC estimates the probability of correctly ranking a randomly selected 

(diseased,not-disease) pair on the ordinal test scale; It ranges from 0 to 1, with the value 1 

corresponding to a perfect diagnostic test. A test that is no better than chance has an AUC 

equal to one half. The AUC is asymptotically normally distributed. The test of H0 : AUC 

= 1/2 based on the asymptotic distribution is equivalent to a Mann-Whitney test. This test 

based on the AUC is a test for differences in the distribution of ordinal test outcomes in 

diseased versus not-diseased groups. [8] 

Each of these nonparametric accuracy statistics (ip, fp, AUC) is a generalized U-statistic: 

Each one is a sum of functions of statistically independent quantities. [9] Because ip, fp, and 
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AUC are U-statistics, bootstrap resampling provides consistent point and interval estimates. [11] 

Bootstrap samples are constructed by drawing patients, the independent units, with re- 

placement. This incorporates all sources of within patient variability. To ensure that accuracy 

statistics are estimable, bootstrap samples are stratified by patient-level disease state. This 

corresponds to conditioning on true disease state. Accuracy statistics are calculated for each 

bootstrap sample. The accuracy of two tests can be compared by calculating the difference 

in accuracy statistics for each bootstrap sample. This incorporates between test correlation. 

Point estimates are simple averages of statistics, or the differences between in statistics, across 

bootstrap samples. Standard errors are estimated using the observed standard errors across 

bootstrap samples. Standard errors should be based on at least 100 draws. Confidence inter- 

vals are estimated using bootstrap estimated standard errors, with a normal approximation. 

Confidence intervals can also be estimated using percentiles, though this requires at least 1,000 

samples. [12] 

When data are correlated, the U-statisitic properties of estimates must be maintained to 

ensure consistency of bootstrap estimates. In other words, 1p, fp, and AUC must each remain 

a sum of functions of statistically independent quantities. Application of the bootstrap to 

ip and fp rates is straightforward. Suppose each patient is evaluated at up to m sites. Let 

ti = (tn,ti2, ■ ■ ■ ,tim)', be the vector of test outcomes across these m sites, and let d, = 

(da,di2,... ,dim)', be the corresponding vector of 0/1 disease indicators. True positive and 

false positive rates for the kth cutpoint are: 

1 1 
iPk = —^0fc(ti,di)       and       fpk = —$^fc(ti, (1 - d|)) 

with kernel function <f>k(U, dä) = £j 6k(tij)dij where Sk(t) = 1 if t > k, and is otherwise zero. 

The associated sample sizes are nD = Y,iY,jdij and n^ = J2il2j0- ~ dij). Here D indicates 

presence of disease and D indicates absence of disease. Even when data are correlated, ip 

and fp rates are sums of independent quantities, so that calculations of bootstrap estimates 

is straightforward. 

Maintaining the U-statistic properties of the AUC statistic while resampling clustered data 

requires some care. The empirical AUC statistic is: 

»-rj^ _ T,ieD Sjgp Vv'jj tj) 
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with kernel function 
1   if  U > tj 

-   if   t=t- 

0   if  U < tj 

Ym V'ij > H'j')        ' 

These sums are over diseased (D) and not diseased (D) groups. When patients have both 

diseased and not-diseased sites, ratings from D and D groups are correlated and the empirical 

AUC statistics is not a generalized U-statistic. The independence of D and D groups can be 

maintained by excluding correlated (D,D) pairs from calculations. This approach excludes 

direct comparisons within patients. The new kernel function is: 

1 if tij > Ulf and i^i' 

\ if Uj = U'ji and i ^ i' 

0   if     Uj < ti'ji or i = f 

the sum, TtijeD'Ei,jlepiljm, is divided by the total number of independent ratings that contribute 

information. The AUC statistic based on the kernel function ifjm estimates the probability of 

correctly ranking an independent (D,D) pair. 

Bootstrap estimation is especially useful when data are clustered and variance formulae 

are not available, for example when sites are clustered within patients and verification of true 

state depends on test outcome. Let V indicate verification status, with V = 1 if disease status 

is verified by a gold standard assessment, and V = 0 if not verified. The probability of a test 

outcome, T, given disease state, D can be caculated as a function of observed probabilities 

using Bayes rule: [14] 

r(T     l\D     d)     P(D = d)P(D = d\V=l) 
F[1 _ t\v -d)- p(T = t)p{T = t|y = 1} n*   ^   *>v   Aj 

where P{D = d) = J2?LiP{T = t)P(D = d\T = t,V = 1). When verification across sites 

within patients is independent, accuracy estimates can be corrected for verification bias by 

weighting verified observations using: 

l'  ]~ P{T = t\V = l)      P{D = d) 

Test outcomes from unverified patients contribute to accuracy estimates through estimated 

weights. More complicated weights that account for different verification scenarios are possi- 

ble. Bias corrected accuracy statistics are generalized U-statistics with unknown parameters. 
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Bias-corrected ip and fp rates are: 

Plc = — E #(**>*.*)  and j# = ^: E #(**.*.«*) 

with kernel function 0|c(ti, di) = Y<jSk{Uj)dijw(Uj,dij,vi3) where, as before, 6k(t) = 1 if 

£ > &, and is otherwise zero. The associated sample sizes are nD = £i £,- dijw(Uj, dij, i^) and 

The kernel function for the adjusted empirical ROC curve is: 

w(tij, l)w(U>j',0) if Uj > U'f and i^i' 

\w{tij, l)w(U>j>,0) if Uj = U'f and i ^ i' 

0 if    Uj < U'f or i = / 

The 2K distinct weights used to adjust for verification bias are estimated parameters. The 

denominator for the AUC statistic is the weighted sum of independent comparisons. The bias- 

corrected version of AUC, is a generalized U-statistic with IK unknown parameters, so that it 

is asymptotically normally distributed and bootstrap resampling methods provide consistent 

point and interval estimates.[16] 

3. Small sample behavior: simulation study design & results 

Using a brief simulation study, we compared bootstrap AUC estimates to Obuchowski's AUC 

estimates. Comparisons are based on the size and power of tests for differences between two 

AUC statistics based on the normal approximation, and on coverage rates for a single AUC 

statistic. Simulated data represent outcomes from two tests, for 4 sites within 100 patients. 

We assume that half the patients have disease at one or more sites. For each patient with 

at least on disease-positive site, the number of additional affected sites is simulated using a 

binomial random number generator with probability 0.5. Test A, the standard test, has an 

empirical AUC equal to 0.8 and false positive rates equal to (0.05, 0.1, 0.3, 0.5). Test B, the 

new test, hast the same false positive rates. The AUC for test B is equal to 0.8 or 0.9. Each 

test has a 5-point ordinal outcome. 

Ordinal test outcomes were simulated by categorizing continuous multivariate normal 

(MVN) psuedodeviates. One standard MVN pseudodeviate of length 2m was generated for 

each patient-observation using the IMSL subroutine DRMVN[13]. (Recall that m is the num- 

ber of sites within patients.)   Outpoints on the ordinal scale were created using fixed false 
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positive rates. The four outpoints are 9k = $_1(1 - fpk). Given these outpoints, the MVN 

mean of the disease positive sites was shifted so that the rates produced the desired AUC. 

The mean shift, p,, was estimated iteratively for each AUC value. True positive rates were 

calculated from the shifted distribution, fpk = §{6k + p), and the underlying AUC was calcu- 

lated from (ip, fp) points. p was updated until the calucated AUC was within 0.00001 of the 

desired AUC. 

We explored four types of within patient correlation: none, moderate, high within-patient 

correlation, and high between-test correlation. Within patient correlation was estimated on 

the MVN scale. Let tijk be the rating for the outcome of the kth test at the jth site within the 

ith patient, and let Ajfe be the corresponding true disease state. Then 

COIl(tijk,ti'j'k/) 

PPO if i = %'   Dijk = Di'jik' = 0 k = k' 

API if i = %'   Dijk = Di'j'ki = 1 k = k' 

PP2 if i = i'   Dijk 7^ Di'j>k> k = k' 

ATI if i = i'   j = f k±k! 
AT2 if i = i'   j^f k^k' 

0 otherwise 

This allows the correlation between sites within patients to depend on the true state of these 

sites. If ppo = pp\ = ppi then some patients tend to have high scores overall, while others 

tend to have low scores. If tests results are less variable when disease is present, then pp\ is is 

greater than both ppo and pp2- The correlation structures we examined are given in Table 1. 

Characteristics of the bootstrap sample when data are subject to verification bias were 

examined by setting disease rates to missing with probability 0.4 when the standard test was 

given one of the two lowest ratings. 

Characteristics of the bootstrap sample when two readers assess provide ratings for each 

patient were examined by generating a vector of length Am for each patient, and assuming 

that 2m were readings from the first reader, and the other 2m were from the second reader. 

As before, rating data were generated by categorizing multivariate normal data to produce 

desired false positive rates and true AUC statistics. Between reader correlation was generated 

on the continuous scale. We assume that separate readers were used for the two tests, so that 

between reader correlation for different tests were set to zero. Within test reader correlation 
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was set to 0.25.  We also assume that within tests the readers are equally accurate, with a 

true AUC equal to either 0.8 or 0.9. 

Simulation Results: 

Obuchowski's noniterative estimator and the bootstrap estimator had very similar test char- 

acteristics (Table 2). Both methods had size and coverage near the nominal levels. The power 

to detect a difference between AUC A and AUCB was also similar for the two methods. Results 

show expected trends for the power to detect a difference in AUC statistics. Power was lowest 

when there was high within patient corelation, but relatively low between test correlation. 

Power was highest when there was high between test correlation. 

The weighted bootstrap estimator had good performance when data were subject to veri- 

fication bias (Table 3). When verification bias is ignored, estimates are optimistic, with size 

greater than 5% and coverage rates greater than 95%. 

4. Mammographer Rereading Study 

The greatest benefit of bootstrap estimation is seen when correlation structures are relatively 

complicated. In this example we use the bootstrap estimator to measure individual and 

overall diagnostic accuracy of 31 mammographers who took part in a rereading study. Each 

mammographer evaluated the same set of screening mammograms from 113 women and gave 

separate interpretations for each breast. These interpretations were given using a five point 

scale: 1) negative or benign; 2) probably benign (short interval follow-up needed); 3) possibly 

abnormal (additional views needed); 4) suspicious abnormality (biopsy should be considered); 

5) highly suggestive of malignancy. The film set included mammograms from 30 women who 

had pathology-verified unilateral breast cancer and mammograms from 87 women who did not 

have breast cancer. True disease state was based on a combination of information from biopsy 

and two years of follow-up mammography. [4]. Bootstrap estimation was used to estimate the 

overall performance of the group of mammographers, and each individual mammographer's 

deviation from the group's average performance. 

Bootstrap samples were created by drawing patients with replacement. For each bootstrap 

sample we calculated four types of oucomes: 1) individual mammographers' four possible 

(1p, fp) pairs (operating points); 2) individual mammographers' AUC statistics (AUQ); 3) the 

average AUC across mammographers (AUC); and 4) the difference between each mammog- 
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raphers' AUC and the average across the remaining mammographers' AUC: AUQ - AUC(;). 

This approach accounts for correlation resulting from assessment of two sites per patient and 

from multiple assessments of the same films. 

Before reporting averaged measures, we checked their appropriateness by examining in- 

dividual mammographer's empirical ROC curves, using their bootstrap estimated operating 

points. Individual mammographers' ROC curves were qualitatively similar. Across mammog- 

raphers, bootstrap AUC estimates ranged from 0.83 to 0.93. The overall mean, AUC, was 0.88 

with 95% confidence interval (0.80,0.93). Based on estmated deviations from the remaining 

mammographers, no mammographer was significantly different from the others. We concluded 

that in this group practice setting the overall mean, AUC, accurately represents the screening 

accuracy of this group of mammographers. 

5. Discussion 

Diagnostic evaluation often involves testing at multiple sites within patients. Recent method- 

logical developments allow simple comparisons of correlated AUC statistics. In particular, 

we found that Obuchowski's noniterative method for calculating the AUC had good proper- 

ties. The bootstrapping AUC estimator had similar properties. We use simulation studies 

to compar Obuchowski's method to the bootstrap method in several other scenarios, varying 

the numbers of sites, the sample prevalence, the true AUC statistics, and true false positive 

rates. In each case our findings were qualitatively similar: There were no differences in the 

performance of these two approaches. The similarity between these approaches is reassuring, 

since both approaches are theoretically valid. 

The primary advantage of the bootstrap estimator is that it easily generalizes to complex 

sampling designs. For example, in the mammography rereading study correlation results from 

evaluation of two breasts per woman and from repeated assessment of films across mammo- 

graphes. In this case, the bootstrap approach allowed estimation of overall average AUC 

statistics, and each mammographers' deviation from this overall mean. Before calculating 

an overall AUC statistic, individual ROC curves need to be examined. Combined results are 

sensible only when individual ROC curves have similar shapes. Similarly, the ROC curve from 

each test should be examined before before comparing two tests using AUC statistics. When 

ROC curves have very different shapes, focusing on the area under these curves can mask 
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important differences. 

Another advantage of bootstrap estimation is that bootstrap estimators naturally incor- 

porate all available data. Data must be missing at random for valid inference. However, 

when missing data depends on test outcomes, bootstrap estimators can be adjusted for ver- 

ification bias[14] by applying the adjustment to each bootstrap sample. These bias-adjusted 

AUC statistics are consistent estimators, since they are simply U-statistics with unknown 

parameters. [15, 16] 

The bootstrap approach presented in this article maintained U-statistic properties of the 

AUC estimator. This allowed reliance on U-statistic theory and ensured consistency of esti- 

mates. Anecdotally, a simple bootstrap that included comparisons between correlated (D, D) 

pairs performed just as well. However, such good performance may not hold in general. [17] 

The greatest limitation of AUC statistics is their inability to incorporate covariate in- 

formation. Stratification can be used to explore covariate effects on the AUC, though this 

approach breaks down as either the number of covariates or the number of covariate levels 

increases. When covariate effects are important, regression models, such as those proposed by 

Pepe[7], are appropriate. In this context, bootstrap accuracy estimates can serve an important 

function, allowing description of covariate effects in terms of standard accuracy statistics. 
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Table 1: Correlation Structure 
none 

moderate 

high within patient 

high between test 

PPO — PP\ = PP2 = f>T\ = PT2 = 0 

PPO = PP\ = PP2 = pTi = PT2 = 0.25 

PPO = PP2 = 0.5, ppi = 0.75, PTI = PT2 = 0.25 

PPO = PPI = PP2 = PT2 = 0.25, pT\ = 0.75 

Table 2: Observed test performance, based on 1,000 simulations with AUCA=0-8 

size power            coverage 

correlation structure estimator AUCB = 0.8 AUCB = 0.9   AUCB = 0.9 

none obuchowski 5.1 91.6                 93.3 

bootstrap 5.3 91.7                 93.9 

moderate correlation obuchowski 5.0 96.3                 94.9 

bootstrap 4.7 95.6                 94.9 

high within patient correlation obuchowski 6.9 83.7                 93.3 

bootstrap 6.4 82.8                 93.8 

high between test correlation obuchowski 6.2 100.0                 93.5 

bootstrap 5.6 100.0                 94.3 
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Table 3:  Observed performance of bootstrap in the presence of verification bias, based on 

1,000 simulations with AUCA=0.8 

size                power            coverage 

correlation structure AUCB = 0.8   AUCB = 0.9   AUCB = 0.9 

none 5.7                88.2                93.9 

moderate correlation 7.4                91.7                95.0 

high within patient correlation 6.6 

high between test correlation 

* remaining simulations are underway 

Table 4: Observed performance of bootstrap when two readers assess each film, based on 1,000 

simulations with AUCA^O-8 

correlation structure 

size                power            coverage 

AUCB = 0.8   AUCB = 0.9   AUCB = 0.9 

none 

moderate correlation 

high within patient correlation 

high between test correlation 
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